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Abstract. An integro-differential equation is constructed which describes the evolution 
of a system of masses evolving by completely inelastic collisions and spontaneous 
fragmentations. The development of a characteristic size spectrum is demonstrated for a 
simple example. 

1. Introduction 

The coagulation equation predicts the time evolution of a spectrum of free masses 
which evolve by undergoing perfectly inelastic collisions. It has a wide sphere of 
application in the physical sciences and has been used in various situations where the 
asymptotic behaviour of a collection of merging objects is of interest. It was first written 
down in discrete forms by Smoluchowski (1916) and in an integral form, appropriate for 
the study of a continuous mass specjrum, by Schumann (1940) (see Chandrasekhar 
1943). It has been used by astrophysicists to simulate star formation (Field and Saslaw 
1965, Penston et a1 1969, Silk 1980), galaxy formation (Silk and White 1978) and the 
size distribution of asteroids and planetesimals (Safranov 1969, Dohnanyi 1969, 
Zvyagina et a1 1974, Pechernikova et a1 1976, Wacker et a1 1977, Simons et a1 1978). 
Other important applications are found in colloid chemistry (Lushnikov 1973), aerosol 
science (Ramabhadran et a1 1976), meteorology (Drake 1972) and haematology (Pope1 
et a1 1975). 

Here we shall generalise the standard coagulation equation to include the effects of 
fragmentation and calculate the asymptotic form of the size spectrum predicted for a 
simple system of masses undergoing both coalescence and fragmentation. 

2. Coagulation with fragmentation 

The standard integral form of the coagulation (or scalar transport) equation describes 
the evolution of the quantity n (m, t ) ,  the number of particles of size m existing at time t. 
Bodies lying in the mass interval (m, m + Sm) are formed by the binary coalescence of 
smaller bodies with masses m - m’ and m’. They are destroyed by any merger with a 
body of mass m. The evolution in time of a system undergoing these changes is given by 
an integro-differential equation for n(m, t ) :  

K(m’-m,m’)n(m-m’, t )n(m’, t )dm’ 
at 

-lom K(m,  m’)n(m, t)n(m’, t )  dm’ 
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The symmetric kernel K(x ,  y )  is the coalescence rate between fragments of mass x and 
y .  Its specific functional form will be dictated by the particular physical process that is 
being modeled. 

We now augment (2.1) to include the possibility that masses of size m + m ’  can 
fragment into pieces m and m’ with rate given by a function F(m, m’). This considera- 
tion requires two additional terms in the transport equation (2.1): one accounting for 
the break-up of particles of mass (m, m + Sm) and another to monitor the number of 
this size that are created by the splitting of larger bodies. The addition of these two 
terms yields a coagulation-fragmentation equation: 

m -=$lo dn(m, t )  K (m-m’ ,m’ )n (m-m’ ,  t)n(m’, t )dm’  
a t  

-lom K(m,  m’)n(m, t)n(m’,  t )  dm’ 

-1 Io F(m‘, m)n(m + m‘, t )  dm’+ 
m 

F(m, m’)n(m + m’) dm‘. (2.2) 

In order to follow the evolution of n(m,  t) it is convenient to introduce some 

lom 
additional quantities: the total number of particles at time t, N ( t ) ,  is 

m 

N ( t ) = [  n(m, t )dm N(0)  E No. 
0 

(2.3) 

If we integrate (2.2) over all masses we see that N ( t )  satisfies an ordinary differential 
equation : 

N ( t ) =  -3 lom iom K(m,  m’)n(m, t )n(m‘ ,  t ) -F(m,  m’)n(m+m’, t )dm dm’. (2.4) 

We now specialise to consider homogeneous coagulation kernels of the form (Trub- 
nikov 1971) 

K(m,  m’)=a+S(m+m’)+ymm’ (2.5) 

where a, S and y are constants. In addition, we shall assume the fragmentation kernel 
to be constant: 

F(m,  m’) = p b=O. (2.6) 

f ( ~ )  3 N(T)/No where T = 0.5N0t (2.7) 

If we introduce the notation 

then (2.4)-(2.7) gives 

(2.8) 

where 

~ 1 0 ~  VINO and V =  J mn(m, t )  dm. (2.10) 
0 
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Integrating (2.8) we have 

8'"- (8 + y - p 2 )  tanh (81/27) 
f ( T )  = + (8 + a )  tanh (O1I2T) 

(2.11) 

where 8 = S2 - a y  + a p 2  > 0.  

The fragmentation terms contribute to the total particle number in a manner that is 
similar to the coagulation effects of the product portion of the kernel K(m,  m') a mm', 
but in the opposing sense. If a = 0 = 6 = 0 and the system only coagulates through the 
product kernel then (2.11) reveals that all the particles coalesce in a finite time 
(Trubnikov 1971). However, if # 0 # y and p 2  > y the fragmentation occurs more 
efficiently than the coalescence and the number of particles increases linearly with time; 
the solution now exists for all future time: 

f ( 7 ) = ( P 2 - Y ) T + 1  P 2 > Y .  (2.12) 

However, it is clear that no time-independent steady state will exist. If y = 0 then we 
see that the total number of particles approaches a constant limit: 

(2.13) 

If r exceeds unity, fragmentation predominates over coalescence and the number of 
bodies will increase monotonically with time. If r is less than unity the particle number 
falls steadily due to coalescence. If T' equals unity, f(~) remains constant. 

lim f(7) = (moP/Noa)1'2 = r. 
T+W 

3. Evolution of the size spectrum 

In order to trace the development of the mass spectrum n(m, t )  we shall require its 
Laplace transform 

W 

L(s, t )  = lo e-smn(m, t )  dm. 

Transforming (2.2) we obtain a partial differential equation for L(s, t ) :  

aL 1 aL 
at  2 as 
- = a (iL2 - N (  t)L) + p (- - + N (  t)s-l  - Ls-') 

) [m2 ",I ( as as 

aL aL +s  N(t)--L--VL + y  - - +v-. 

(3.1) 

In practice one would like to know if the mass spectrum approaches a steady, 
time-independent form as t + CO. If such asymptotically steady spectra exist their 
Laplace transforms will satisfy (3.2) with L = 0 and N ( t )  = N(co), yielding a first-order 
ordinary differential equation to be solved for L(s ) .  This can be solved either approx- 
imately, by series methods, or exactly and then inverted to give the steady-state 
spectrum n(m,  CO). As an example we solve the case where the coagulation and 
fragmentation kernels are both constant (8 = y = 0). 

Since f + as t + CO (from equation (2.13)), we have for the steady state L(s): 
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This is a Riccati form and if any particular solution, L,(s), is known then the general 
solution is obtainable. A particular solution is 

L , ( ~ )  = r2(r + s)-l (3.4) 
and so the general solution will be 

L(s)  = L*(s) + U ( S )  

d ( s )  = - r - 2 u 2 + 2 u r - 1 ~ - 1 ( ~  +r)-l(S2+rs +r2) 
where, by (3.3), (3.4) and ( 3 3 ,  

so 
2r2s2 

u(s )  = 
- r2) + 2 c ( s  + r)' exp( - 2 ~ r - 7  (3.7) 

with C constant. Although (3.4), (3.5) and (3.7) give the general solution for L(s)  we 
note that U (s + CO) = 2I' and so this portion of the solution does not possess a smooth 
transform. The inverse of L,(s) yields a mass spectrum 

(3.8) 
whilst, when C = 0, the portion u(s )  yields a mass spectrum which has a singularity at 
the origin. Thus, the asymptotic form for the mass spectrum of a system undergoing 
simultaneous coagulation and fragmentation is given by (3.8) where r is defined by 
(2.13). The behaviour of the solutions to the coagulation equation in the absence of 
fragmentation given by Trubnikov (r = 0 = p )  indicates that in that case the steady- 
state size spectrum is of the form 

n(m,  t +  00) = r2 ePrm 

n(m, t )  - f 2 ( t )  e-mf''' (3.9) 
where 

f ( t )  = (1 +At)-' .  (3.10) 

Thus in the limit of large time the asymptotic form of the size spectrum is similar in form 
to the case where fragmentation is absent even when the fragmentation is strong (r > 1). 

It would be of interest to discover if this conclusion is sustained for a wider range of 
choices for the coagulation and fragmentation kernels. It is well known that, in the 
absence of fragmentation, coagulation with a = y = 0 yields a characteristic size spec- 
trum of the form it (m) - m-1'5 e-m, after long times. This is characteristic of various 
measured size spectra in astrophysical situations (Safronov 1969) and the persistence of 
this theoretical prediction under the influence of fragmentation processes would be of 
some interest. 
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